GRE数学妙招——快速判断整数的奇偶性

奇偶性的考察在考场上也不少见,很多同学看到了都赶紧带数(这种方法不是不行,只是没那么精确)


奇数跟偶数是我们从小学就开始接触的一个概念,既然都学过,那么先来一个问题:

Question

2018/4/9

0是什么数?


A. 奇数

B. 偶数

C. 什么都不是

你会选啥?如果你选A,就当你手滑

如果选了C,那小学得回炉重造一下

正确答案是B偶数。是的, 0是偶数

关于奇偶性的概念OG中是这样定义的:

如果一个整数能被2整除,那么这个整数就是偶数,否则(不能被2整除,即余数为1)就是奇数。所以0是偶数。

比较常见的奇偶性问题在于考察四则运算以及指数运算对于奇偶性的影响。


对于加减法你需要记住:


一奇一偶相加减,结果一定是奇数,参考1+1 = 2 以及1-1=0

同奇同偶相加减,结果一定是偶数,参考2+2 =4 以及2-2 = 0


对于乘法你需要记住:


当且仅当所有乘数都是奇数的时候,结果才是奇数;如果有至少一个偶数,那么结果就是偶数


对于指数运算你需要记住:


对于正整数n和k而言,n的奇偶性跟n^k的奇偶性一致

这里一定要注意的是k为正!整!数! 如果k=0了,那么这些就不再适用了。除法运算考察频率很低,暂不做讨论。

知识点看完了, 上题:

例1

2018/4/9

B is a positive integer, and A is 125 greater than B. Which of the following statements must be true?


Indicate all such statements.


A. A is odd.

B. B is even.

C. A+B is odd.

D. A-B is even.

E. AB is even.

根据题目可知A-B=125 = 奇数,说明A和B一个是奇数一个是偶数。

但是并不确定哪一个奇数,哪一个是偶数,所以AB都是错的;


A+B跟A-B是一奇一偶相加减,结果都是奇数,所以C正确,D不对;


最后AB是奇数×偶数 = 偶数,E正确。

所以正确答案为CE两个选项。

再来看第二个栗子:

例2

2018/4/9

If x=2y+1, and y =2w, where w, x, and y are integers, which of the following must be an odd integer?

A. xy+w

B. xy+w+1

C. (x+y)w

D. wy+x

E. wx+y

从题干描述可得知,x=偶数+奇数= 奇数,y=偶数,w奇偶性不知道,问题是哪一个一定是奇数。

xy是偶数,但是w奇偶性不知道,所以AB两个奇偶性都无法确定;

C选项(x+y)w 是奇数乘以一个数字,结果不知道;

D选项是偶数(wy)+奇数(x)=奇数。

E选项是 wx(奇偶性未知)+y(偶数),结果不知道。

所以正确答案选择D


数字的奇偶性,你搞清楚了吗?


思考一下面的题应该选啥?


思考题

2018/4/9

If x, y, and z are consecutive positive integers and x<y<z, which of the following numbers must be even integers?

Indicate all such numbers.

原文链接:,转发请注明来源!